Can you hang weights in the right place to make the equaliser balance?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Use the number weights to find different ways of balancing the equaliser.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

There were 22 legs creeping across the web. How many flies? How many spiders?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Use five steps to count forwards or backwards in 1s or 10s to get to 50. What strategies did you use?

Investigate what happens when you add house numbers along a street in different ways.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?