Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Can you hang weights in the right place to make the equaliser balance?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Here is a chance to play a version of the classic Countdown Game.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Use the number weights to find different ways of balancing the equaliser.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This task follows on from Build it Up and takes the ideas into three dimensions!

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!