Use the information about Sally and her brother to find out how many children there are in the Brown family.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you hang weights in the right place to make the equaliser balance?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Use the number weights to find different ways of balancing the equaliser.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

This challenge extends the Plants investigation so now four or more children are involved.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

An environment which simulates working with Cuisenaire rods.

Sam got into an elevator. He went down five floors, up six floors, down seven floors, then got out on the second floor. On what floor did he get on?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?