In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?

How can we help students make sense of addition and subtraction of negative numbers?

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

At the beginning of May Tom put his tomato plant outside. On the same day he sowed a bean in another pot. When will the two be the same height?

There are nasty versions of this dice game but we'll start with the nice ones...

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

Leah and Tom each have a number line. Can you work out where their counters will land? What are the secret jumps they make with their counters?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

In this article for teachers, Elizabeth Carruthers and Maulfry Worthington explore the differences between 'recording mathematics' and 'representing mathematical thinking'.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you score 100 by throwing rings on this board? Is there more than way to do it?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your oponent.

Find a great variety of ways of asking questions which make 8.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Use five steps to count forwards or backwards in 1s or 10s to get to 50. What strategies did you use?

These two group activities use mathematical reasoning - one is numerical, one geometric.

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Investigate the different distances of these car journeys and find out how long they take.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

You have 5 darts and your target score is 44. How many different ways could you score 44?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?