For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Three dice are placed in a row. Find a way to turn each one so that the three numbers on top of the dice total the same as the three numbers on the front of the dice. Can you find all the ways to do. . . .

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Here is a chance to play a version of the classic Countdown Game.

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you make square numbers by adding two prime numbers together?

This article for teachers suggests ideas for activities built around 10 and 2010.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

An environment which simulates working with Cuisenaire rods.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Investigate the different distances of these car journeys and find out how long they take.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

If you have only four weights, where could you place them in order to balance this equaliser?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This dice train has been made using specific rules. How many different trains can you make?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This challenge is about finding the difference between numbers which have the same tens digit.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?