In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

If you have only four weights, where could you place them in order to balance this equaliser?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Here is a chance to play a version of the classic Countdown Game.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Got It game for an adult and child. How can you play so that you know you will always win?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

An environment which simulates working with Cuisenaire rods.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?