Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

If you have only four weights, where could you place them in order to balance this equaliser?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This challenge is about finding the difference between numbers which have the same tens digit.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you hang weights in the right place to make the equaliser balance?

An environment which simulates working with Cuisenaire rods.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This dice train has been made using specific rules. How many different trains can you make?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?