This article for teachers suggests ideas for activities built around 10 and 2010.

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

Investigate the different distances of these car journeys and find out how long they take.

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

On Planet Plex, there are only 6 hours in the day. Can you answer these questions about how Arog the Alien spends his day?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Use the number weights to find different ways of balancing the equaliser.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

Go through the maze, collecting and losing your money as you go. Which route gives you the highest return? And the lowest?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

There were 22 legs creeping across the web. How many flies? How many spiders?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

These two group activities use mathematical reasoning - one is numerical, one geometric.