What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Here is a chance to play a version of the classic Countdown Game.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

If you have only four weights, where could you place them in order to balance this equaliser?

Number problems at primary level that require careful consideration.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Use the number weights to find different ways of balancing the equaliser.

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.