Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Can you hang weights in the right place to make the equaliser balance?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

In Sam and Jill's garden there are two sorts of ladybirds with 7 spots or 4 spots. What numbers of total spots can you make?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

If you have only four weights, where could you place them in order to balance this equaliser?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Use the number weights to find different ways of balancing the equaliser.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

This challenge is about finding the difference between numbers which have the same tens digit.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Throw the dice and decide whether to double or halve the number. Will you be the first to reach the target?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?