Find your way through the grid starting at 2 and following these operations. What number do you end on?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

You have 5 darts and your target score is 44. How many different ways could you score 44?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Can you hang weights in the right place to make the equaliser balance?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Find all the numbers that can be made by adding the dots on two dice.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

An environment which simulates working with Cuisenaire rods.

These two group activities use mathematical reasoning - one is numerical, one geometric.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you use the information to find out which cards I have used?

This challenge is about finding the difference between numbers which have the same tens digit.

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you find all the ways to get 15 at the top of this triangle of numbers?

This dice train has been made using specific rules. How many different trains can you make?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?