Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Can you use the information to find out which cards I have used?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Number problems at primary level that require careful consideration.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Find all the numbers that can be made by adding the dots on two dice.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?