Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

If you have only four weights, where could you place them in order to balance this equaliser?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you hang weights in the right place to make the equaliser balance?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Here is a chance to play a version of the classic Countdown Game.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

An environment which simulates working with Cuisenaire rods.

This task follows on from Build it Up and takes the ideas into three dimensions!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?