Here is a chance to play a version of the classic Countdown Game.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Find all the numbers that can be made by adding the dots on two dice.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

If you have only four weights, where could you place them in order to balance this equaliser?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

There are nasty versions of this dice game but we'll start with the nice ones...

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This dice train has been made using specific rules. How many different trains can you make?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This challenge is about finding the difference between numbers which have the same tens digit.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Can you score 100 by throwing rings on this board? Is there more than way to do it?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

The value of the circle changes in each of the following problems. Can you discover its value in each problem?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

An environment which simulates working with Cuisenaire rods.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

Can you hang weights in the right place to make the equaliser balance?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?