Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Can you find 2 butterflies to go on each flower so that the numbers on each pair of butterflies adds to the same number as the one on the flower?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

A game for 2 or more players. Practise your addition and subtraction with the aid of a game board and some dried peas!

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

There were 22 legs creeping across the web. How many flies? How many spiders?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

Sam got into an elevator. He went down five floors, up six floors, down seven floors, then got out on the second floor. On what floor did he get on?

Find all the numbers that can be made by adding the dots on two dice.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Fill in the numbers to make the sum of each row, column and diagonal equal to 15.

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

On Planet Plex, there are only 6 hours in the day. Can you answer these questions about how Arog the Alien spends his day?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

In this game for two players, the aim is to make a row of four coins which total one dollar.

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

This challenge is about finding the difference between numbers which have the same tens digit.