Bluey-green, white and transparent squares with a few odd bits of shapes around the perimeter. But, how many squares are there of each type in the complete circle? Study the picture and make. . . .

What fractions of the largest circle are the two shaded regions?

At the corner of the cube circular arcs are drawn and the area enclosed shaded. What fraction of the surface area of the cube is shaded? Try working out the answer without recourse to pencil and. . . .

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

In the four examples below identical squares of side one unit contain some circles shaded blue. In which of the four examples is the shaded area greatest?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Straight lines are drawn from each corner of a square to the mid points of the opposite sides. Express the area of the octagon that is formed at the centre as a fraction of the area of the square.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

A follow-up activity to Tiles in the Garden.

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

A hallway floor is tiled and each tile is one foot square. Given that the number of tiles around the perimeter is EXACTLY half the total number of tiles, find the possible dimensions of the hallway.

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

I'm thinking of a rectangle with an area of 24. What could its perimeter be?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

Can you choose your units so that a cube has the same numerical value for it volume, surface area and total edge length?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

A circle with the radius of 2.2 centimetres is drawn touching the sides of a square. What area of the square is NOT covered by the circle?

This article, written for teachers, discusses the merits of different kinds of resources: those which involve exploration and those which centre on calculation.

A tower of squares is built inside a right angled isosceles triangle. The largest square stands on the hypotenuse. What fraction of the area of the triangle is covered by the series of squares?

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

Can you find the area of a parallelogram defined by two vectors?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

What is the same and what is different about these circle questions? What connections can you make?

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

A task which depends on members of the group noticing the needs of others and responding.

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

Follow the instructions and you can take a rectangle, cut it into 4 pieces, discard two small triangles, put together the remaining two pieces and end up with a rectangle the same size. Try it!

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Four quadrants are drawn centred at the vertices of a square . Find the area of the central region bounded by the four arcs.

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

How can you change the area of a shape but keep its perimeter the same? How can you change the perimeter but keep the area the same?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

If the base of a rectangle is increased by 10% and the area is unchanged, by what percentage (exactly) is the width decreased by ?

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

Can you work out the area of the inner square and give an explanation of how you did it?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

A trapezium is divided into four triangles by its diagonals. Suppose the two triangles containing the parallel sides have areas a and b, what is the area of the trapezium?

Investigate the different ways of cutting a perfectly circular pie into equal pieces using exactly 3 cuts. The cuts have to be along chords of the circle (which might be diameters).

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

A farmer has a field which is the shape of a trapezium as illustrated below. To increase his profits he wishes to grow two different crops. To do this he would like to divide the field into two. . . .

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?