Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

A hallway floor is tiled and each tile is one foot square. Given that the number of tiles around the perimeter is EXACTLY half the total number of tiles, find the possible dimensions of the hallway.

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Three rods of different lengths form three sides of an enclosure with right angles between them. What arrangement maximises the area

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

What fractions of the largest circle are the two shaded regions?

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

At the corner of the cube circular arcs are drawn and the area enclosed shaded. What fraction of the surface area of the cube is shaded? Try working out the answer without recourse to pencil and. . . .

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Can you find the area of a parallelogram defined by two vectors?

Cut off three right angled isosceles triangles to produce a pentagon. With two lines, cut the pentagon into three parts which can be rearranged into another square.

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Straight lines are drawn from each corner of a square to the mid points of the opposite sides. Express the area of the octagon that is formed at the centre as a fraction of the area of the square.

Determine the total shaded area of the 'kissing triangles'.

What is the same and what is different about these circle questions? What connections can you make?

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

Can you work out the area of the inner square and give an explanation of how you did it?

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Follow the instructions and you can take a rectangle, cut it into 4 pieces, discard two small triangles, put together the remaining two pieces and end up with a rectangle the same size. Try it!

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

This article, written for teachers, discusses the merits of different kinds of resources: those which involve exploration and those which centre on calculation.

A tower of squares is built inside a right angled isosceles triangle. The largest square stands on the hypotenuse. What fraction of the area of the triangle is covered by the series of squares?

Can you draw the height-time chart as this complicated vessel fills with water?

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

How can you change the area of a shape but keep its perimeter the same? How can you change the perimeter but keep the area the same?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

Triangle ABC is right angled at A and semi circles are drawn on all three sides producing two 'crescents'. Show that the sum of the areas of the two crescents equals the area of triangle ABC.

I'm thinking of a rectangle with an area of 24. What could its perimeter be?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

A follow-up activity to Tiles in the Garden.

You have a 12 by 9 foot carpet with an 8 by 1 foot hole exactly in the middle. Cut the carpet into two pieces to make a 10 by 10 foot square carpet.