Search by Topic

Resources tagged with Area similar to Where Art and Maths Combine:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

Other tags that relate to Where Art and Maths Combine
Art. Geometric sequence. Area. Logarithmic functions. Perimeters. Scale factors. Fractal. Similarity. Topology. Limits.

There are 85 results

Broad Topics > Measures and Mensuration > Area

problem icon

Same Height

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A trapezium is divided into four triangles by its diagonals. Suppose the two triangles containing the parallel sides have areas a and b, what is the area of the trapezium?

problem icon

Dividing the Field

Stage: 4 Challenge Level: Challenge Level:1

A farmer has a field which is the shape of a trapezium as illustrated below. To increase his profits he wishes to grow two different crops. To do this he would like to divide the field into two. . . .

problem icon

Percentage Unchanged

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If the base of a rectangle is increased by 10% and the area is unchanged, by what percentage (exactly) is the width decreased by ?

problem icon

Bound to Be

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Four quadrants are drawn centred at the vertices of a square . Find the area of the central region bounded by the four arcs.

problem icon

Crescents and Triangles

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Triangle ABC is right angled at A and semi circles are drawn on all three sides producing two 'crescents'. Show that the sum of the areas of the two crescents equals the area of triangle ABC.

problem icon

Bicentric Quadrilaterals

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

problem icon

Gutter

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

problem icon

Diagonals for Area

Stage: 4 Challenge Level: Challenge Level:1

Prove that the area of a quadrilateral is given by half the product of the lengths of the diagonals multiplied by the sine of the angle between the diagonals.

problem icon

Two Shapes & Printer Ink

Stage: 4 Challenge Level: Challenge Level:1

If I print this page which shape will require the more yellow ink?

problem icon

Uniform Units

Stage: 4 Challenge Level: Challenge Level:1

Can you choose your units so that a cube has the same numerical value for it volume, surface area and total edge length?

problem icon

Two Circles

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

problem icon

Of All the Areas

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

problem icon

From All Corners

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Straight lines are drawn from each corner of a square to the mid points of the opposite sides. Express the area of the octagon that is formed at the centre as a fraction of the area of the square.

problem icon

Doesn't Add Up

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

problem icon

Max Box

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Three rods of different lengths form three sides of an enclosure with right angles between them. What arrangement maximises the area

problem icon

Equilateral Areas

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

problem icon

Circle-in

Stage: 4 Challenge Level: Challenge Level:1

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

problem icon

Six Discs

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?

problem icon

Areas of Parallelograms

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find the area of a parallelogram defined by two vectors?

problem icon

Pick's Theorem

Stage: 3 Challenge Level: Challenge Level:1

Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

problem icon

Can They Be Equal?

Stage: 3 Challenge Level: Challenge Level:1

Can you find rectangles where the value of the area is the same as the value of the perimeter?

problem icon

Growing Rectangles

Stage: 3 Challenge Level: Challenge Level:1

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

problem icon

Changing Areas, Changing Perimeters

Stage: 3 Challenge Level: Challenge Level:1

How can you change the area of a shape but keep its perimeter the same? How can you change the perimeter but keep the area the same?

problem icon

Warmsnug Double Glazing

Stage: 3 Challenge Level: Challenge Level:1

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

problem icon

Compare Areas

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

problem icon

Perimeter Possibilities

Stage: 3 Challenge Level: Challenge Level:1

I'm thinking of a rectangle with an area of 24. What could its perimeter be?

problem icon

Trapezium Four

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

problem icon

Lying and Cheating

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Follow the instructions and you can take a rectangle, cut it into 4 pieces, discard two small triangles, put together the remaining two pieces and end up with a rectangle the same size. Try it!

problem icon

Isosceles

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

problem icon

Rhombus in Rectangle

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

problem icon

Semi-detached

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

problem icon

Hallway Borders

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A hallway floor is tiled and each tile is one foot square. Given that the number of tiles around the perimeter is EXACTLY half the total number of tiles, find the possible dimensions of the hallway.

problem icon

All in a Jumble

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

My measurements have got all jumbled up! Swap them around and see if you can find a combination where every measurement is valid.

problem icon

Rati-o

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

problem icon

Efficient Packing

Stage: 4 Challenge Level: Challenge Level:1

How efficiently can you pack together disks?

problem icon

Curvy Areas

Stage: 4 Challenge Level: Challenge Level:1

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

problem icon

Making Rectangles

Stage: 2 and 3 Challenge Level: Challenge Level:1

A task which depends on members of the group noticing the needs of others and responding.

problem icon

Extending Great Squares

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore one of these five pictures.

problem icon

Place Your Orders

Stage: 3 Challenge Level: Challenge Level:1

Can you rank these sets of quantities in order, from smallest to largest? Can you provide convincing evidence for your rankings?

problem icon

Tiling Into Slanted Rectangles

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A follow-up activity to Tiles in the Garden.

problem icon

Biology Measurement Challenge

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Analyse these beautiful biological images and attempt to rank them in size order.

problem icon

Maths Filler

Stage: 4 Challenge Level: Challenge Level:1

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

problem icon

Maths Filler 2

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you draw the height-time chart as this complicated vessel fills with water?

problem icon

Cylinder Cutting

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

problem icon

An Unusual Shape

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you maximise the area available to a grazing goat?

problem icon

Tilted Squares

Stage: 3 Challenge Level: Challenge Level:1

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

problem icon

Fence It

Stage: 3 Challenge Level: Challenge Level:1

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

problem icon

Partly Circles

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the same and what is different about these circle questions? What connections can you make?

problem icon

Isosceles Triangles

Stage: 3 Challenge Level: Challenge Level:1

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

problem icon

Inscribed in a Circle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?