If I print this page which shape will require the more yellow ink?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

A trapezium is divided into four triangles by its diagonals. Suppose the two triangles containing the parallel sides have areas a and b, what is the area of the trapezium?

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

A farmer has a field which is the shape of a trapezium as illustrated below. To increase his profits he wishes to grow two different crops. To do this he would like to divide the field into two. . . .

Triangle ABC is right angled at A and semi circles are drawn on all three sides producing two 'crescents'. Show that the sum of the areas of the two crescents equals the area of triangle ABC.

Prove that the area of a quadrilateral is given by half the product of the lengths of the diagonals multiplied by the sine of the angle between the diagonals.

Straight lines are drawn from each corner of a square to the mid points of the opposite sides. Express the area of the octagon that is formed at the centre as a fraction of the area of the square.

If the base of a rectangle is increased by 10% and the area is unchanged, by what percentage (exactly) is the width decreased by ?

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Can you find the area of a parallelogram defined by two vectors?

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Four quadrants are drawn centred at the vertices of a square . Find the area of the central region bounded by the four arcs.

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

A point P is selected anywhere inside an equilateral triangle. What can you say about the sum of the perpendicular distances from P to the sides of the triangle? Can you prove your conjecture?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Can you choose your units so that a cube has the same numerical value for it volume, surface area and total edge length?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Three rods of different lengths form three sides of an enclosure with right angles between them. What arrangement maximises the area

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

What is the same and what is different about these circle questions? What connections can you make?

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

Can you show that you can share a square pizza equally between two people by cutting it four times using vertical, horizontal and diagonal cuts through any point inside the square?

Can you work out the area of the inner square and give an explanation of how you did it?

What fractions of the largest circle are the two shaded regions?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

Three squares are drawn on the sides of a triangle ABC. Their areas are respectively 18 000, 20 000 and 26 000 square centimetres. If the outer vertices of the squares are joined, three more. . . .

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Analyse these beautiful biological images and attempt to rank them in size order.

A follow-up activity to Tiles in the Garden.