In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Follow the instructions and you can take a rectangle, cut it into 4 pieces, discard two small triangles, put together the remaining two pieces and end up with a rectangle the same size. Try it!

Straight lines are drawn from each corner of a square to the mid points of the opposite sides. Express the area of the octagon that is formed at the centre as a fraction of the area of the square.

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Prove that the area of a quadrilateral is given by half the product of the lengths of the diagonals multiplied by the sine of the angle between the diagonals.

Four quadrants are drawn centred at the vertices of a square . Find the area of the central region bounded by the four arcs.

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

A follow-up activity to Tiles in the Garden.

Can you choose your units so that a cube has the same numerical value for it volume, surface area and total edge length?

Triangle ABC is right angled at A and semi circles are drawn on all three sides producing two 'crescents'. Show that the sum of the areas of the two crescents equals the area of triangle ABC.

What is the shape and dimensions of a box that will contain six cups and have as small a surface area as possible.

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

Three rods of different lengths form three sides of an enclosure with right angles between them. What arrangement maximises the area

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

A tower of squares is built inside a right angled isosceles triangle. The largest square stands on the hypotenuse. What fraction of the area of the triangle is covered by the series of squares?

Investigate the properties of quadrilaterals which can be drawn with a circle just touching each side and another circle just touching each vertex.

If the base of a rectangle is increased by 10% and the area is unchanged, by what percentage (exactly) is the width decreased by ?

A farmer has a field which is the shape of a trapezium as illustrated below. To increase his profits he wishes to grow two different crops. To do this he would like to divide the field into two. . . .

Investigate the different ways of cutting a perfectly circular pie into equal pieces using exactly 3 cuts. The cuts have to be along chords of the circle (which might be diameters).

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

A trapezium is divided into four triangles by its diagonals. Suppose the two triangles containing the parallel sides have areas a and b, what is the area of the trapezium?

If I print this page which shape will require the more yellow ink?

Can you find a general rule for finding the areas of equilateral triangles drawn on an isometric grid?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Determine the total shaded area of the 'kissing triangles'.

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

Can you work out the area of the inner square and give an explanation of how you did it?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Given a square ABCD of sides 10 cm, and using the corners as centres, construct four quadrants with radius 10 cm each inside the square. The four arcs intersect at P, Q, R and S. Find the. . . .

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

How can you change the area of a shape but keep its perimeter the same? How can you change the perimeter but keep the area the same?