Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

An investigation that gives you the opportunity to make and justify predictions.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Can you draw a square in which the perimeter is numerically equal to the area?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

I cut this square into two different shapes. What can you say about the relationship between them?

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Here are many ideas for you to investigate - all linked with the number 2000.

Grandpa was measuring a rug using yards, feet and inches. Can you help William to work out its area?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

My measurements have got all jumbled up! Swap them around and see if you can find a combination where every measurement is valid.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

How many centimetres of rope will I need to make another mat just like the one I have here?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Have a good look at these images. Can you describe what is happening? There are plenty more images like this on NRICH's Exploring Squares CD.

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

This article for teachers gives some food for thought when teaching ideas about area.

What do these two triangles have in common? How are they related?

An activity for high-attaining learners which involves making a new cylinder from a cardboard tube.

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

A follow-up activity to Tiles in the Garden.

Can you rank these sets of quantities in order, from smallest to largest? Can you provide convincing evidence for your rankings?

A simple visual exploration into halving and doubling.

Use the information on these cards to draw the shape that is being described.

Are these statements always true, sometimes true or never true?

What happens to the area and volume of 2D and 3D shapes when you enlarge them?

Measure problems for primary learners to work on with others.

Measure problems at primary level that require careful consideration.

Measure problems for inquiring primary learners.

Look at the mathematics that is all around us - this circular window is a wonderful example.

Explore this interactivity and see if you can work out what it does. Could you use it to estimate the area of a shape?

Measure problems at primary level that may require determination.