Search by Topic

Resources tagged with Pythagoras' theorem similar to 30-60-90 Polypuzzle:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 72 results

Broad Topics > 2D Geometry, Shape and Space > Pythagoras' theorem

problem icon

30-60-90 Polypuzzle

Stage: 5 Challenge Level: Challenge Level:1

Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.

problem icon

Tilting Triangles

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

problem icon

Cubic Rotations

Stage: 4 Challenge Level: Challenge Level:1

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

problem icon

Squaring the Circle and Circling the Square

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

problem icon

Round and Round

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

problem icon

Square World

Stage: 5 Challenge Level: Challenge Level:1

P is a point inside a square ABCD such that PA= 1, PB = 2 and PC = 3. How big is angle APB ?

problem icon

Get Cross

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A white cross is placed symmetrically in a red disc with the central square of side length sqrt 2 and the arms of the cross of length 1 unit. What is the area of the disc still showing?

problem icon

Squ-areas

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Three squares are drawn on the sides of a triangle ABC. Their areas are respectively 18 000, 20 000 and 26 000 square centimetres. If the outer vertices of the squares are joined, three more. . . .

problem icon

Belt

Stage: 5 Challenge Level: Challenge Level:1

A belt of thin wire, length L, binds together two cylindrical welding rods, whose radii are R and r, by passing all the way around them both. Find L in terms of R and r.

problem icon

Star Gazing

Stage: 4 Challenge Level: Challenge Level:1

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

problem icon

The Spider and the Fly

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

problem icon

Equilateral Areas

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

problem icon

Xtra

Stage: 4 and 5 Challenge Level: Challenge Level:1

Find the sides of an equilateral triangle ABC where a trapezium BCPQ is drawn with BP=CQ=2 , PQ=1 and AP+AQ=sqrt7 . Note: there are 2 possible interpretations.

problem icon

Corridors

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

problem icon

All Tied Up

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?

problem icon

Partly Circles

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the same and what is different about these circle questions? What connections can you make?

problem icon

Chord

Stage: 5 Challenge Level: Challenge Level:1

Equal touching circles have centres on a line. From a point of this line on a circle, a tangent is drawn to the farthest circle. Find the lengths of chords where the line cuts the other circles.

problem icon

Fitting In

Stage: 4 Challenge Level: Challenge Level:1

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

problem icon

Strange Rectangle

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

ABCD is a rectangle and P, Q, R and S are moveable points on the edges dividing the edges in certain ratios. Strangely PQRS is always a cyclic quadrilateral and you can find the angles.

problem icon

Ladder and Cube

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

problem icon

Six Discs

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?

problem icon

Pythagoras for a Tetrahedron

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In a right-angled tetrahedron prove that the sum of the squares of the areas of the 3 faces in mutually perpendicular planes equals the square of the area of the sloping face. A generalisation. . . .

problem icon

Kite in a Square

Stage: 4 Challenge Level: Challenge Level:1

Can you make sense of the three methods to work out the area of the kite in the square?

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Compare Areas

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

problem icon

Two Circles

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

problem icon

The Dodecahedron

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What are the shortest distances between the centres of opposite faces of a regular solid dodecahedron on the surface and through the middle of the dodecahedron?

problem icon

Classic Cube

Stage: 5 Challenge Level: Challenge Level:1

The net of a cube is to be cut from a sheet of card 100 cm square. What is the maximum volume cube that can be made from a single piece of card?

problem icon

Circle Scaling

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You are given a circle with centre O. Describe how to construct with a straight edge and a pair of compasses, two other circles centre O so that the three circles have areas in the ratio 1:2:3.

problem icon

Circle Box

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

problem icon

Holly

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The ten arcs forming the edges of the "holly leaf" are all arcs of circles of radius 1 cm. Find the length of the perimeter of the holly leaf and the area of its surface.

problem icon

Grid Lockout

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What remainders do you get when square numbers are divided by 4?

problem icon

Circle Packing

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Equal circles can be arranged so that each circle touches four or six others. What percentage of the plane is covered by circles in each packing pattern? ...

problem icon

Are You Kidding

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If the altitude of an isosceles triangle is 8 units and the perimeter of the triangle is 32 units.... What is the area of the triangle?

problem icon

The Fire-fighter's Car Keys

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A fire-fighter needs to fill a bucket of water from the river and take it to a fire. What is the best point on the river bank for the fire-fighter to fill the bucket ?.

problem icon

Retracircles

Stage: 5 Challenge Level: Challenge Level:1

Four circles all touch each other and a circumscribing circle. Find the ratios of the radii and prove that joining 3 centres gives a 3-4-5 triangle.

problem icon

Some(?) of the Parts

Stage: 4 Challenge Level: Challenge Level:1

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

problem icon

Rectangular Pyramids

Stage: 4 and 5 Challenge Level: Challenge Level:1

Is the sum of the squares of two opposite sloping edges of a rectangular based pyramid equal to the sum of the squares of the other two sloping edges?

problem icon

Circumnavigation

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The sides of a triangle are 25, 39 and 40 units of length. Find the diameter of the circumscribed circle.

problem icon

Under the Ribbon

Stage: 4 Challenge Level: Challenge Level:1

A ribbon is nailed down with a small amount of slack. What is the largest cube that can pass under the ribbon ?

problem icon

Pareq Calc

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

problem icon

Three Four Five

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

problem icon

Reach for Polydron

Stage: 5 Challenge Level: Challenge Level:1

A tetrahedron has two identical equilateral triangles faces, of side length 1 unit. The other two faces are right angled isosceles triangles. Find the exact volume of the tetrahedron.

problem icon

Orthogonal Circle

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Given any three non intersecting circles in the plane find another circle or straight line which cuts all three circles orthogonally.

problem icon

Pythagoras Mod 5

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that for every right angled triangle which has sides with integer lengths: (1) the area of the triangle is even and (2) the length of one of the sides is divisible by 5.

problem icon

Logosquares

Stage: 5 Challenge Level: Challenge Level:1

Ten squares form regular rings either with adjacent or opposite vertices touching. Calculate the inner and outer radii of the rings that surround the squares.

problem icon

At a Glance

Stage: 4 Challenge Level: Challenge Level:1

The area of a regular pentagon looks about twice as a big as the pentangle star drawn within it. Is it?

problem icon

Incircles

Stage: 5 Challenge Level: Challenge Level:1

The incircles of 3, 4, 5 and of 5, 12, 13 right angled triangles have radii 1 and 2 units respectively. What about triangles with an inradius of 3, 4 or 5 or ...?

problem icon

Medallions

Stage: 4 Challenge Level: Challenge Level:1

I keep three circular medallions in a rectangular box in which they just fit with each one touching the other two. The smallest one has radius 4 cm and touches one side of the box, the middle sized. . . .

problem icon

Napkin

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .