# Search by Topic

#### Resources tagged with Pythagoras' theorem similar to Slippage:

Filter by: Content type:
Stage:
Challenge level:

### There are 70 results

Broad Topics > 2D Geometry, Shape and Space > Pythagoras' theorem

### Slippage

##### Stage: 4 Challenge Level:

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

### Where to Land

##### Stage: 4 Challenge Level:

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

### Under the Ribbon

##### Stage: 4 Challenge Level:

A ribbon is nailed down with a small amount of slack. What is the largest cube that can pass under the ribbon ?

### Tilting Triangles

##### Stage: 4 Challenge Level:

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

### Ball Packing

##### Stage: 4 Challenge Level:

If a ball is rolled into the corner of a room how far is its centre from the corner?

### Star Gazing

##### Stage: 4 Challenge Level:

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

### Matter of Scale

##### Stage: 4 Challenge Level:

Prove Pythagoras' Theorem using enlargements and scale factors.

### All Tied Up

##### Stage: 4 Challenge Level:

A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?

### Corridors

##### Stage: 4 Challenge Level:

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

### Rhombus in Rectangle

##### Stage: 4 Challenge Level:

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

### Nicely Similar

##### Stage: 4 Challenge Level:

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

### The Spider and the Fly

##### Stage: 4 Challenge Level:

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

### Where Is the Dot?

##### Stage: 4 Challenge Level:

A dot starts at the point (1,0) and turns anticlockwise. Can you estimate the height of the dot after it has turned through 45 degrees? Can you calculate its height?

### Some(?) of the Parts

##### Stage: 4 Challenge Level:

A circle touches the lines OA, OB and AB where OA and OB are perpendicular. Show that the diameter of the circle is equal to the perimeter of the triangle

### Two Circles

##### Stage: 4 Challenge Level:

Draw two circles, each of radius 1 unit, so that each circle goes through the centre of the other one. What is the area of the overlap?

### Cutting a Cube

##### Stage: 3 Challenge Level:

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

### Squaring the Circle and Circling the Square

##### Stage: 4 Challenge Level:

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

### Circle Packing

##### Stage: 4 Challenge Level:

Equal circles can be arranged so that each circle touches four or six others. What percentage of the plane is covered by circles in each packing pattern? ...

### Fitting In

##### Stage: 4 Challenge Level:

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

### Three Four Five

##### Stage: 4 Challenge Level:

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

##### Stage: 4 Challenge Level:

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

### Cubic Rotations

##### Stage: 4 Challenge Level:

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

### Napkin

##### Stage: 4 Challenge Level:

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

### Tennis

##### Stage: 3 Challenge Level:

A tennis ball is served from directly above the baseline (assume the ball travels in a straight line). What is the minimum height that the ball can be hit at to ensure it lands in the service area?

### Equilateral Areas

##### Stage: 4 Challenge Level:

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

### Weighty Problem

##### Stage: 3 Challenge Level:

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

### Medallions

##### Stage: 4 Challenge Level:

Three circular medallions fit in a rectangular box. Can you find the radius of the largest one?

### The Old Goats

##### Stage: 3 Challenge Level:

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

### Rectangular Pyramids

##### Stage: 4 and 5 Challenge Level:

Is the sum of the squares of two opposite sloping edges of a rectangular based pyramid equal to the sum of the squares of the other two sloping edges?

### Semi-square

##### Stage: 4 Challenge Level:

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

### Tilted Squares

##### Stage: 3 Challenge Level:

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

### Semi-detached

##### Stage: 4 Challenge Level:

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

### Trice

##### Stage: 3 Challenge Level:

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

### Six Discs

##### Stage: 4 Challenge Level:

Six circular discs are packed in different-shaped boxes so that the discs touch their neighbours and the sides of the box. Can you put the boxes in order according to the areas of their bases?

### Holly

##### Stage: 4 Challenge Level:

The ten arcs forming the edges of the "holly leaf" are all arcs of circles of radius 1 cm. Find the length of the perimeter of the holly leaf and the area of its surface.

### Grid Lockout

##### Stage: 4 Challenge Level:

What remainders do you get when square numbers are divided by 4?

### Kite in a Square

##### Stage: 4 Challenge Level:

Can you make sense of the three methods to work out the area of the kite in the square?

### Pythagoras Proofs

##### Stage: 4 Challenge Level:

Can you make sense of these three proofs of Pythagoras' Theorem?

### Hex

##### Stage: 3 Challenge Level:

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

### Circle Box

##### Stage: 4 Challenge Level:

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

### The Dangerous Ratio

##### Stage: 3

This article for pupils and teachers looks at a number that even the great mathematician, Pythagoras, found terrifying.

### Liethagoras' Theorem

##### Stage: 2 and 3

Liethagoras, Pythagoras' cousin (!), was jealous of Pythagoras and came up with his own theorem. Read this article to find out why other mathematicians laughed at him.

### Inscribed in a Circle

##### Stage: 4 Challenge Level:

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

### The Fire-fighter's Car Keys

##### Stage: 4 Challenge Level:

A fire-fighter needs to fill a bucket of water from the river and take it to a fire. What is the best point on the river bank for the fire-fighter to fill the bucket ?.

### Pythagoras

##### Stage: 2 and 3

Pythagoras of Samos was a Greek philosopher who lived from about 580 BC to about 500 BC. Find out about the important developments he made in mathematics, astronomy, and the theory of music.

### Circle Scaling

##### Stage: 4 Challenge Level:

You are given a circle with centre O. Describe how to construct with a straight edge and a pair of compasses, two other circles centre O so that the three circles have areas in the ratio 1:2:3.

### Partly Circles

##### Stage: 4 Challenge Level:

What is the same and what is different about these circle questions? What connections can you make?

### Squ-areas

##### Stage: 4 Challenge Level:

Three squares are drawn on the sides of a triangle ABC. Their areas are respectively 18 000, 20 000 and 26 000 square centimetres. If the outer vertices of the squares are joined, three more. . . .

### Isosceles

##### Stage: 3 Challenge Level:

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.