Search by Topic

Resources tagged with Pythagoras' theorem similar to Online:

Filter by: Content type:
Stage:
Challenge level:

There are 71 results

Broad Topics > 2D Geometry, Shape and Space > Pythagoras' theorem

The Old Goats

Stage: 3 Challenge Level:

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

Trice

Stage: 3 Challenge Level:

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

A Chordingly

Stage: 3 Challenge Level:

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

The Pillar of Chios

Stage: 3 Challenge Level:

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Weighty Problem

Stage: 3 Challenge Level:

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

Cutting a Cube

Stage: 3 Challenge Level:

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

Tilted Squares

Stage: 3 Challenge Level:

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Corridors

Stage: 4 Challenge Level:

A 10x10x10 cube is made from 27 2x2 cubes with corridors between them. Find the shortest route from one corner to the opposite corner.

Tilting Triangles

Stage: 4 Challenge Level:

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Star Gazing

Stage: 4 Challenge Level:

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

Nicely Similar

Stage: 4 Challenge Level:

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Pareq Calc

Stage: 4 Challenge Level:

Triangle ABC is an equilateral triangle with three parallel lines going through the vertices. Calculate the length of the sides of the triangle if the perpendicular distances between the parallel. . . .

Semi-square

Stage: 4 Challenge Level:

What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?

Pythagoras Proofs

Stage: 4 Challenge Level:

Can you make sense of these three proofs of Pythagoras' Theorem?

The Spider and the Fly

Stage: 4 Challenge Level:

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

All Tied Up

Stage: 4 Challenge Level:

A ribbon runs around a box so that it makes a complete loop with two parallel pieces of ribbon on the top. How long will the ribbon be?

Squaring the Circle and Circling the Square

Stage: 4 Challenge Level:

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Inscribed in a Circle

Stage: 3 Challenge Level:

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Cubic Rotations

Stage: 4 Challenge Level:

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Floored

Stage: 3 Challenge Level:

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

Square Pegs

Stage: 3 Challenge Level:

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

Pythagoras

Stage: 2 and 3

Pythagoras of Samos was a Greek philosopher who lived from about 580 BC to about 500 BC. Find out about the important developments he made in mathematics, astronomy, and the theory of music.

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Hex

Stage: 3 Challenge Level:

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Circle Packing

Stage: 4 Challenge Level:

Equal circles can be arranged so that each circle touches four or six others. What percentage of the plane is covered by circles in each packing pattern? ...

The Dangerous Ratio

Stage: 3

This article for pupils and teachers looks at a number that even the great mathematician, Pythagoras, found terrifying.

Rhombus in Rectangle

Stage: 4 Challenge Level:

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Qqq..cubed

Stage: 4 Challenge Level:

It is known that the area of the largest equilateral triangular section of a cube is 140sq cm. What is the side length of the cube? The distances between the centres of two adjacent faces of. . . .

Liethagoras' Theorem

Stage: 2 and 3

Liethagoras, Pythagoras' cousin (!), was jealous of Pythagoras and came up with his own theorem. Read this article to find out why other mathematicians laughed at him.

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Three Four Five

Stage: 4 Challenge Level:

Two semi-circles (each of radius 1/2) touch each other, and a semi-circle of radius 1 touches both of them. Find the radius of the circle which touches all three semi-circles.

Kite in a Square

Stage: 4 Challenge Level:

Can you make sense of the three methods to work out the area of the kite in the square?

Equilateral Areas

Stage: 4 Challenge Level:

ABC and DEF are equilateral triangles of side 3 and 4 respectively. Construct an equilateral triangle whose area is the sum of the area of ABC and DEF.

Where Is the Dot?

Stage: 3 Challenge Level:

A dot starts at the point (1,0) and turns anticlockwise. Can you estimate the height of the dot after it has turned through 45 degrees? Can you calculate its height?

Isosceles

Stage: 3 Challenge Level:

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

The Medieval Octagon

Stage: 4 Challenge Level:

Medieval stonemasons used a method to construct octagons using ruler and compasses... Is the octagon regular? Proof please.

Zig Zag

Stage: 4 Challenge Level:

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Matter of Scale

Stage: 4 Challenge Level:

Prove Pythagoras Theorem using enlargements and scale factors.

Pythagorean Triples

Stage: 3 Challenge Level:

How many right-angled triangles are there with sides that are all integers less than 100 units?

Tennis

Stage: 3 Challenge Level:

A tennis ball is served from directly above the baseline (assume the ball travels in a straight line). What is the minimum height that the ball can be hit at to ensure it lands in the service area?

Garfield's Proof

Stage: 4 Challenge Level:

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

Circle Scaling

Stage: 4 Challenge Level:

You are given a circle with centre O. Describe how to construct with a straight edge and a pair of compasses, two other circles centre O so that the three circles have areas in the ratio 1:2:3.

Circle Box

Stage: 4 Challenge Level:

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Stage: 4 Challenge Level:

The sides of a triangle are 25, 39 and 40 units of length. Find the diameter of the circumscribed circle.

The Fire-fighter's Car Keys

Stage: 4 Challenge Level:

A fire-fighter needs to fill a bucket of water from the river and take it to a fire. What is the best point on the river bank for the fire-fighter to fill the bucket ?.

Semi-detached

Stage: 4 Challenge Level:

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Slippage

Stage: 4 Challenge Level:

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Take a Square

Stage: 4 Challenge Level:

Cut off three right angled isosceles triangles to produce a pentagon. With two lines, cut the pentagon into three parts which can be rearranged into another square.