Search by Topic

Resources tagged with Pythagoras' theorem similar to T-table:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

Other tags that relate to T-table
Circles. Pythagoras' theorem. Area. Visualising. smartphone. Generalising.

There are 19 results

Broad Topics > 2D Geometry, Shape and Space > Pythagoras' theorem

problem icon

Tilted Squares

Stage: 3 Challenge Level: Challenge Level:1

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

problem icon

The Pillar of Chios

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

problem icon

The Dangerous Ratio

Stage: 3

This article for pupils and teachers looks at a number that even the great mathematician, Pythagoras, found terrifying.

problem icon

Pythagorean Triples

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many right-angled triangles are there with sides that are all integers less than 100 units?

problem icon

Square Pegs

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Which is a better fit, a square peg in a round hole or a round peg in a square hole?

problem icon

Floored

Stage: 3 Challenge Level: Challenge Level:1

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

problem icon

Pythagoras

Stage: 2 and 3

Pythagoras of Samos was a Greek philosopher who lived from about 580 BC to about 500 BC. Find out about the important developments he made in mathematics, astronomy, and the theory of music.

problem icon

A Chordingly

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

problem icon

Tennis

Stage: 3 Challenge Level: Challenge Level:1

A tennis ball is served from directly above the baseline (assume the ball travels in a straight line). What is the minimum height that the ball can be hit at to ensure it lands in the service area?

problem icon

Isosceles

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that a triangle with sides of length 5, 5 and 6 has the same area as a triangle with sides of length 5, 5 and 8. Find other pairs of non-congruent isosceles triangles which have equal areas.

problem icon

Liethagoras' Theorem

Stage: 2 and 3

Liethagoras, Pythagoras' cousin (!), was jealous of Pythagoras and came up with his own theorem. Read this article to find out why other mathematicians laughed at him.

problem icon

Hex

Stage: 3 Challenge Level: Challenge Level:1

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

problem icon

All Is Number

Stage: 2 and 3

Read all about Pythagoras' mathematical discoveries in this article written for students.

problem icon

The Old Goats

Stage: 3 Challenge Level: Challenge Level:1

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

problem icon

Trice

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

problem icon

Weighty Problem

Stage: 3 Challenge Level: Challenge Level:1

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

problem icon

Cutting a Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

problem icon

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!