These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

Use the isometric grid paper to find the different polygons.

Can you fill in the empty boxes in the grid with the right shape and colour?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Make an estimate of how many light fittings you can see. Was your estimate a good one? How can you decide?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

This LOGO challenge starts by looking at 10-sided polygons then generalises the findings to any polygon, putting particular emphasis on external angles

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.

This investigation explores using different shapes as the hands of the clock. What things occur as the the hands move.

What shape and size of drinks mat is best for flipping and catching?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

This is the second in a twelve part introduction to Logo for beginners. In this part you learn to draw polygons.

An environment that enables you to investigate tessellations of regular polygons