Search by Topic

Resources tagged with Factors and multiples similar to Black Box:

Filter by: Content type:
Stage:
Challenge level:

There are 43 results

Broad Topics > Numbers and the Number System > Factors and multiples

Factorial

Stage: 4 Challenge Level:

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Factorial Fun

Stage: 5 Challenge Level:

How many divisors does factorial n (n!) have?

N000ughty Thoughts

Stage: 4 Challenge Level:

How many noughts are at the end of these giant numbers?

Charlie's Delightful Machine

Stage: 3 and 4 Challenge Level:

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Factors and Multiples Game

Stage: 2, 3 and 4 Challenge Level:

A game in which players take it in turns to choose a number. Can you block your opponent?

Multiplication Magic

Stage: 4 Challenge Level:

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Mod 3

Stage: 4 Challenge Level:

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Polite Numbers

Stage: 5 Challenge Level:

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Different by One

Stage: 4 Challenge Level:

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Napier's Location Arithmetic

Stage: 4 Challenge Level:

Have you seen this way of doing multiplication ?

Squaresearch

Stage: 4 Challenge Level:

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Star Product Sudoku

Stage: 3 and 4 Challenge Level:

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Times Right

Stage: 3 and 4 Challenge Level:

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

LCM Sudoku II

Stage: 3, 4 and 5 Challenge Level:

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Transposition Cipher

Stage: 3 and 4 Challenge Level:

Can you work out what size grid you need to read our secret message?

Substitution Transposed

Stage: 3 and 4 Challenge Level:

Substitution and Transposition all in one! How fiendish can these codes get?

Lattice Points

Stage: 5 Challenge Level:

Why are there only a few lattice points on a hyperbola and infinitely many on a parabola?

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

The Public Key

Stage: 5 Challenge Level:

Find 180 to the power 59 (mod 391) to crack the code. To find the secret number with a calculator we work with small numbers like 59 and 391 but very big numbers are used in the real world for this.

What a Joke

Stage: 4 Challenge Level:

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Public Key Cryptography

Stage: 5

An introduction to the ideas of public key cryptography using small numbers to explain the process. In practice the numbers used are too large to factorise in a reasonable time.

Big Powers

Stage: 3 and 4 Challenge Level:

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Data Chunks

Stage: 4 Challenge Level:

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Diagonal Product Sudoku

Stage: 3 and 4 Challenge Level:

Given the products of diagonally opposite cells - can you complete this Sudoku?

There's Always One Isn't There

Stage: 4 Challenge Level:

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

Modular Knights

Stage: 5 Challenge Level:

Try to move the knight to visit each square once and return to the starting point on this unusual chessboard.

For What?

Stage: 4 Challenge Level:

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Expenses

Stage: 4 Challenge Level:

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Sixational

Stage: 4 and 5 Challenge Level:

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

A Biggy

Stage: 4 Challenge Level:

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Dirisibly Yours

Stage: 5 Challenge Level:

Find and explain a short and neat proof that 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Old Nuts

Stage: 5 Challenge Level:

In turn 4 people throw away three nuts from a pile and hide a quarter of the remainder finally leaving a multiple of 4 nuts. How many nuts were at the start?

Common Divisor

Stage: 4 Challenge Level:

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

LCM Sudoku

Stage: 4 Challenge Level:

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Factoring a Million

Stage: 4 Challenge Level:

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Take Three from Five

Stage: 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Phew I'm Factored

Stage: 4 Challenge Level:

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Powerful Factors

Stage: 5 Challenge Level:

Use the fact that: x²-y² = (x-y)(x+y) and x³+y³ = (x+y) (x²-xy+y²) to find the highest power of 2 and the highest power of 3 which divide 5^{36}-1.

Telescoping Functions

Stage: 5

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Really Mr. Bond

Stage: 4 Challenge Level:

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Number Rules - OK

Stage: 4 Challenge Level:

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Factors and Multiples - Secondary Resources

Stage: 3 and 4 Challenge Level:

A collection of resources to support work on Factors and Multiples at Secondary level.