What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Find the number which has 8 divisors, such that the product of the divisors is 331776.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Can you find what the last two digits of the number $4^{1999}$ are?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Find the highest power of 11 that will divide into 1000! exactly.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Can you find any perfect numbers? Read this article to find out more...

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you work out what size grid you need to read our secret message?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you find a way to identify times tables after they have been shifted up?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A game that tests your understanding of remainders.