Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Have you seen this way of doing multiplication ?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Can you find any perfect numbers? Read this article to find out more...

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Given the products of adjacent cells, can you complete this Sudoku?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you work out what size grid you need to read our secret message?

Substitution and Transposition all in one! How fiendish can these codes get?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Explore the relationship between simple linear functions and their graphs.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.