The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Given the products of diagonally opposite cells - can you complete this Sudoku?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Given the products of adjacent cells, can you complete this Sudoku?

Can you work out what size grid you need to read our secret message?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

A game that tests your understanding of remainders.

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you find any perfect numbers? Read this article to find out more...

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Find the highest power of 11 that will divide into 1000! exactly.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Substitution and Transposition all in one! How fiendish can these codes get?

Can you find what the last two digits of the number $4^{1999}$ are?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.