Follow this recipe for sieving numbers and see what interesting patterns emerge.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Find the highest power of 11 that will divide into 1000! exactly.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Given the products of adjacent cells, can you complete this Sudoku?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Can you find what the last two digits of the number $4^{1999}$ are?

Can you find any perfect numbers? Read this article to find out more...

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

How many zeros are there at the end of the number which is the product of first hundred positive integers?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Is there an efficient way to work out how many factors a large number has?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A game that tests your understanding of remainders.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Can you work out what size grid you need to read our secret message?

Can you explain the strategy for winning this game with any target?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?