Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Can you find what the last two digits of the number $4^{1999}$ are?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Can you find any perfect numbers? Read this article to find out more...

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Find the highest power of 11 that will divide into 1000! exactly.

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Explore the relationship between simple linear functions and their graphs.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you work out what size grid you need to read our secret message?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

A game that tests your understanding of remainders.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Have you seen this way of doing multiplication ?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Can you find a way to identify times tables after they have been shifted up?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Find the frequency distribution for ordinary English, and use it to help you crack the code.