Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you find any perfect numbers? Read this article to find out more...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Can you work out what size grid you need to read our secret message?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find the highest power of 11 that will divide into 1000! exactly.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Have you seen this way of doing multiplication ?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

How many zeros are there at the end of the number which is the product of first hundred positive integers?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Substitution and Transposition all in one! How fiendish can these codes get?

Can you find what the last two digits of the number $4^{1999}$ are?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?