Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Have you seen this way of doing multiplication ?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Find the highest power of 11 that will divide into 1000! exactly.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Can you find what the last two digits of the number $4^{1999}$ are?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Can you find any perfect numbers? Read this article to find out more...

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Substitution and Transposition all in one! How fiendish can these codes get?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

A game that tests your understanding of remainders.

Can you find a way to identify times tables after they have been shifted up?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?