Find the highest power of 11 that will divide into 1000! exactly.

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Can you find what the last two digits of the number $4^{1999}$ are?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Can you find any perfect numbers? Read this article to find out more...

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Have you seen this way of doing multiplication ?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Substitution and Transposition all in one! How fiendish can these codes get?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you work out what size grid you need to read our secret message?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?