The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Can you find what the last two digits of the number $4^{1999}$ are?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you work out what size grid you need to read our secret message?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Substitution and Transposition all in one! How fiendish can these codes get?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Find the highest power of 11 that will divide into 1000! exactly.

Can you find any perfect numbers? Read this article to find out more...

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

A collection of resources to support work on Factors and Multiples at Secondary level.

Given the products of adjacent cells, can you complete this Sudoku?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?