Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Can you find a way to identify times tables after they have been shifted up?

Given the products of diagonally opposite cells - can you complete this Sudoku?

A game that tests your understanding of remainders.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Given the products of adjacent cells, can you complete this Sudoku?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

A collection of resources to support work on Factors and Multiples at Secondary level.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

A game in which players take it in turns to choose a number. Can you block your opponent?

Can you explain the strategy for winning this game with any target?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Have you seen this way of doing multiplication ?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?