The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Have you seen this way of doing multiplication ?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Can you find what the last two digits of the number $4^{1999}$ are?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

A collection of resources to support work on Factors and Multiples at Secondary level.

Substitution and Transposition all in one! How fiendish can these codes get?

Can you work out what size grid you need to read our secret message?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Can you find any perfect numbers? Read this article to find out more...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Explore the relationship between simple linear functions and their graphs.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find the highest power of 11 that will divide into 1000! exactly.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Can you find a way to identify times tables after they have been shifted up?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?