You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you work out what size grid you need to read our secret message?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Substitution and Transposition all in one! How fiendish can these codes get?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

A collection of resources to support work on Factors and Multiples at Secondary level.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Find the highest power of 11 that will divide into 1000! exactly.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Can you find what the last two digits of the number $4^{1999}$ are?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?