A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you find what the last two digits of the number $4^{1999}$ are?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

The clues for this Sudoku are the product of the numbers in adjacent squares.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Find the highest power of 11 that will divide into 1000! exactly.

Can you find any perfect numbers? Read this article to find out more...

A collection of resources to support work on Factors and Multiples at Secondary level.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Given the products of diagonally opposite cells - can you complete this Sudoku?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Given the products of adjacent cells, can you complete this Sudoku?

Have you seen this way of doing multiplication ?

Is there an efficient way to work out how many factors a large number has?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Explore the relationship between simple linear functions and their graphs.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.