What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Can you find what the last two digits of the number $4^{1999}$ are?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Find the highest power of 11 that will divide into 1000! exactly.

Can you find any perfect numbers? Read this article to find out more...

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Have you seen this way of doing multiplication ?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

A game that tests your understanding of remainders.

Explore the relationship between simple linear functions and their graphs.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Find the number which has 8 divisors, such that the product of the divisors is 331776.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Given the products of adjacent cells, can you complete this Sudoku?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Can you find a way to identify times tables after they have been shifted up?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?