Can you find what the last two digits of the number $4^{1999}$ are?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Can you find any perfect numbers? Read this article to find out more...

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Given the products of adjacent cells, can you complete this Sudoku?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

A game that tests your understanding of remainders.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Explore the relationship between simple linear functions and their graphs.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Can you explain the strategy for winning this game with any target?

A game in which players take it in turns to choose a number. Can you block your opponent?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Find the highest power of 11 that will divide into 1000! exactly.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Given the products of diagonally opposite cells - can you complete this Sudoku?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Have you seen this way of doing multiplication ?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?