Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

A game in which players take it in turns to choose a number. Can you block your opponent?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Given the products of adjacent cells, can you complete this Sudoku?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Got It game for an adult and child. How can you play so that you know you will always win?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

A game that tests your understanding of remainders.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Given the products of diagonally opposite cells - can you complete this Sudoku?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

The clues for this Sudoku are the product of the numbers in adjacent squares.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

A collection of resources to support work on Factors and Multiples at Secondary level.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

A challenge that requires you to apply your knowledge of the properties of numbers. Can you fill all the squares on the board?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the highest power of 11 that will divide into 1000! exactly.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Can you find any perfect numbers? Read this article to find out more...

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?