Search by Topic

Resources tagged with Factors and multiples similar to Weekly Problem 39 - 2008:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 91 results

Broad Topics > Numbers and the Number System > Factors and multiples

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Dozens

Stage: 3 Challenge Level: Challenge Level:1

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

problem icon

Ben's Game

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

problem icon

14 Divisors

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the smallest number with exactly 14 divisors?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

American Billions

Stage: 3 Challenge Level: Challenge Level:1

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

problem icon

Funny Factorisation

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

problem icon

Adding in Rows

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

problem icon

Repeaters

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

GOT IT Now

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Got It

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

problem icon

Even So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

problem icon

Reverse to Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

problem icon

Pebbles

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

problem icon

Mathematical Swimmer

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Adding All Nine

Stage: 3 Challenge Level: Challenge Level:1

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Shopping Basket

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

problem icon

Hidden Squares

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

problem icon

Factors and Multiple Challenges

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

problem icon

AB Search

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

problem icon

Remainder

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

problem icon

Number Rules - OK

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

problem icon

Oh! Hidden Inside?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find the number which has 8 divisors, such that the product of the divisors is 331776.

problem icon

Common Divisor

Stage: 4 Challenge Level: Challenge Level:1

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

problem icon

Remainders

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

problem icon

What a Joke

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

problem icon

Stars

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

problem icon

What Numbers Can We Make Now?

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

problem icon

Eminit

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

problem icon

Really Mr. Bond

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

problem icon

Gaxinta

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

How Old Are the Children?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

problem icon

Product Sudoku

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

The clues for this Sudoku are the product of the numbers in adjacent squares.

problem icon

Ewa's Eggs

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

problem icon

Divisively So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

problem icon

Expenses

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

problem icon

A First Product Sudoku

Stage: 3 Challenge Level: Challenge Level:1

Given the products of adjacent cells, can you complete this Sudoku?

problem icon

Digat

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

problem icon

Factoring Factorials

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the highest power of 11 that will divide into 1000! exactly.

problem icon

Shifting Times Tables

Stage: 3 Challenge Level: Challenge Level:1

Can you find a way to identify times tables after they have been shifted up?

problem icon

Missing Multipliers

Stage: 3 Challenge Level: Challenge Level:1

What is the smallest number of answers you need to reveal in order to work out the missing headers?

problem icon

Charlie's Delightful Machine

Stage: 3 and 4 Challenge Level: Challenge Level:1

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

problem icon

Sieve of Eratosthenes

Stage: 3 Challenge Level: Challenge Level:1

Follow this recipe for sieving numbers and see what interesting patterns emerge.

problem icon

Transposition Cipher

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you work out what size grid you need to read our secret message?

problem icon

Substitution Cipher

Stage: 3 and 4 Challenge Level: Challenge Level:1

Find the frequency distribution for ordinary English, and use it to help you crack the code.