Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Can you work out what size grid you need to read our secret message?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you find any perfect numbers? Read this article to find out more...

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

The clues for this Sudoku are the product of the numbers in adjacent squares.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Substitution and Transposition all in one! How fiendish can these codes get?

Is there an efficient way to work out how many factors a large number has?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game that tests your understanding of remainders.

Explore the relationship between simple linear functions and their graphs.

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Find the frequency distribution for ordinary English, and use it to help you crack the code.