Search by Topic

Resources tagged with Factors and multiples similar to Weekly Problem 28 - 2007:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 92 results

Broad Topics > Numbers and the Number System > Factors and multiples

problem icon

LCM Sudoku II

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

problem icon

LCM Sudoku

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

problem icon

Multiplication Equation Sudoku

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

problem icon

Product Sudoku 2

Stage: 3 and 4 Challenge Level: Challenge Level:1

Given the products of diagonally opposite cells - can you complete this Sudoku?

problem icon

Product Sudoku

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

The clues for this Sudoku are the product of the numbers in adjacent squares.

problem icon

The Remainders Game

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game that tests your understanding of remainders.

problem icon

Factor Track

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

problem icon

American Billions

Stage: 3 Challenge Level: Challenge Level:1

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

problem icon

How Old Are the Children?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

problem icon

Shopping Basket

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

problem icon

14 Divisors

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the smallest number with exactly 14 divisors?

problem icon

Factors and Multiples Game

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A game in which players take it in turns to choose a number. Can you block your opponent?

problem icon

GOT IT Now

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Ben's Game

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

problem icon

Substitution Cipher

Stage: 3 and 4 Challenge Level: Challenge Level:1

Find the frequency distribution for ordinary English, and use it to help you crack the code.

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Transposition Cipher

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you work out what size grid you need to read our secret message?

problem icon

A First Product Sudoku

Stage: 3 Challenge Level: Challenge Level:1

Given the products of adjacent cells, can you complete this Sudoku?

problem icon

Factors and Multiple Challenges

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

problem icon

Remainder

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

problem icon

Adding All Nine

Stage: 3 Challenge Level: Challenge Level:1

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

problem icon

Shifting Times Tables

Stage: 3 Challenge Level: Challenge Level:1

Can you find a way to identify times tables after they have been shifted up?

problem icon

Factors and Multiples - Secondary Resources

Stage: 3 and 4 Challenge Level: Challenge Level:1

A collection of resources to support work on Factors and Multiples at Secondary level.

problem icon

Remainders

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

problem icon

Factorial

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

How many zeros are there at the end of the number which is the product of first hundred positive integers?

problem icon

AB Search

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

Got It

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

problem icon

Can You Find a Perfect Number?

Stage: 2 and 3

Can you find any perfect numbers? Read this article to find out more...

problem icon

What a Joke

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

problem icon

Factoring Factorials

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the highest power of 11 that will divide into 1000! exactly.

problem icon

Stars

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

problem icon

Inclusion Exclusion

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

problem icon

Thirty Six Exactly

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The number 12 = 2^2 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

problem icon

Phew I'm Factored

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

problem icon

Hot Pursuit

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

problem icon

Even So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

problem icon

Eminit

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

problem icon

Data Chunks

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

problem icon

Counting Cogs

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

problem icon

Dozens

Stage: 3 Challenge Level: Challenge Level:1

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

problem icon

Oh! Hidden Inside?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find the number which has 8 divisors, such that the product of the divisors is 331776.

problem icon

Expenses

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

problem icon

Diggits

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you find what the last two digits of the number $4^{1999}$ are?

problem icon

Ewa's Eggs

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

problem icon

Digat

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

problem icon

Helen's Conjecture

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

problem icon

Sieve of Eratosthenes

Stage: 3 Challenge Level: Challenge Level:1

Follow this recipe for sieving numbers and see what interesting patterns emerge.

problem icon

Substitution Transposed

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Substitution and Transposition all in one! How fiendish can these codes get?

problem icon

N000ughty Thoughts

Stage: 4 Challenge Level: Challenge Level:1

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .