A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Is there an efficient way to work out how many factors a large number has?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you find a way to identify times tables after they have been shifted up?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Can you find any perfect numbers? Read this article to find out more...

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Find the highest power of 11 that will divide into 1000! exactly.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Can you work out what size grid you need to read our secret message?

Have you seen this way of doing multiplication ?

Substitution and Transposition all in one! How fiendish can these codes get?

The clues for this Sudoku are the product of the numbers in adjacent squares.