Given the products of diagonally opposite cells - can you complete this Sudoku?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The clues for this Sudoku are the product of the numbers in adjacent squares.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

A game that tests your understanding of remainders.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

A collection of resources to support work on Factors and Multiples at Secondary level.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Can you work out what size grid you need to read our secret message?

A game in which players take it in turns to choose a number. Can you block your opponent?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Substitution and Transposition all in one! How fiendish can these codes get?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Find the highest power of 11 that will divide into 1000! exactly.

Have you seen this way of doing multiplication ?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Can you find any perfect numbers? Read this article to find out more...

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.