Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Can you find what the last two digits of the number $4^{1999}$ are?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Can you find any perfect numbers? Read this article to find out more...

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

What is the smallest number of answers you need to reveal in order to work out the missing headers?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

How many numbers less than 1000 are NOT divisible by either: a) 2 or 5; or b) 2, 5 or 7?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Find the highest power of 11 that will divide into 1000! exactly.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Can you find a way to identify times tables after they have been shifted up?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths. . . .

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Given the products of adjacent cells, can you complete this Sudoku?

A game that tests your understanding of remainders.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A challenge that requires you to apply your knowledge of the properties of numbers. Can you fill all the squares on the board?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Explore the relationship between simple linear functions and their graphs.