Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Find the highest power of 11 that will divide into 1000! exactly.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Given the products of adjacent cells, can you complete this Sudoku?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Is there an efficient way to work out how many factors a large number has?

A game that tests your understanding of remainders.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Can you find any perfect numbers? Read this article to find out more...

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Can you find a way to identify times tables after they have been shifted up?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Follow this recipe for sieving numbers and see what interesting patterns emerge.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Explore the relationship between simple linear functions and their graphs.