The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The clues for this Sudoku are the product of the numbers in adjacent squares.

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Given the products of adjacent cells, can you complete this Sudoku?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Can you work out what size grid you need to read our secret message?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

A game that tests your understanding of remainders.

A collection of resources to support work on Factors and Multiples at Secondary level.

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

A game in which players take it in turns to choose a number. Can you block your opponent?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Can you find any perfect numbers? Read this article to find out more...

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Find the highest power of 11 that will divide into 1000! exactly.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Can you find what the last two digits of the number $4^{1999}$ are?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Find the number which has 8 divisors, such that the product of the divisors is 331776.