# Search by Topic

#### Resources tagged with Factors and multiples similar to An Introduction to Modular Arithmetic:

Filter by: Content type:
Stage:
Challenge level:

### There are 92 results

Broad Topics > Numbers and the Number System > Factors and multiples

### Data Chunks

##### Stage: 4 Challenge Level:

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

### Squaresearch

##### Stage: 4 Challenge Level:

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

### Factoring a Million

##### Stage: 4 Challenge Level:

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

### Different by One

##### Stage: 4 Challenge Level:

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

### Transposition Cipher

##### Stage: 3 and 4 Challenge Level:

Can you work out what size grid you need to read our secret message?

### Expenses

##### Stage: 4 Challenge Level:

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

### Factorial

##### Stage: 4 Challenge Level:

How many zeros are there at the end of the number which is the product of first hundred positive integers?

### Mod 3

##### Stage: 4 Challenge Level:

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

### A Biggy

##### Stage: 4 Challenge Level:

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

### LCM Sudoku

##### Stage: 4 Challenge Level:

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

### Factors and Multiples - Secondary Resources

##### Stage: 3 and 4 Challenge Level:

A collection of resources to support work on Factors and Multiples at Secondary level.

### Big Powers

##### Stage: 3 and 4 Challenge Level:

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

### Phew I'm Factored

##### Stage: 4 Challenge Level:

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

### Times Right

##### Stage: 3 and 4 Challenge Level:

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

### Really Mr. Bond

##### Stage: 4 Challenge Level:

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

### Sixational

##### Stage: 4 and 5 Challenge Level:

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

### Substitution Transposed

##### Stage: 3 and 4 Challenge Level:

Substitution and Transposition all in one! How fiendish can these codes get?

### Star Product Sudoku

##### Stage: 3 and 4 Challenge Level:

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

### What a Joke

##### Stage: 4 Challenge Level:

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

### Multiplication Magic

##### Stage: 4 Challenge Level:

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

### What Numbers Can We Make?

##### Stage: 3 Challenge Level:

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

### Power Crazy

##### Stage: 3 Challenge Level:

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

### Helen's Conjecture

##### Stage: 3 Challenge Level:

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

### Common Divisor

##### Stage: 4 Challenge Level:

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

### Remainder

##### Stage: 3 Challenge Level:

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

### Take Three from Five

##### Stage: 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

### For What?

##### Stage: 4 Challenge Level:

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

### N000ughty Thoughts

##### Stage: 4 Challenge Level:

How many noughts are at the end of these giant numbers?

### AB Search

##### Stage: 3 Challenge Level:

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

### Even So

##### Stage: 3 Challenge Level:

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

### Diagonal Product Sudoku

##### Stage: 3 and 4 Challenge Level:

Given the products of diagonally opposite cells - can you complete this Sudoku?

### LCM Sudoku II

##### Stage: 3, 4 and 5 Challenge Level:

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

### What Numbers Can We Make Now?

##### Stage: 3 Challenge Level:

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

### Three Times Seven

##### Stage: 3 Challenge Level:

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

### Mathematical Swimmer

##### Stage: 3 Challenge Level:

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

### Factoring Factorials

##### Stage: 3 Challenge Level:

Find the highest power of 11 that will divide into 1000! exactly.

### Thirty Six Exactly

##### Stage: 3 Challenge Level:

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

### Eminit

##### Stage: 3 Challenge Level:

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

### Hidden Rectangles

##### Stage: 3 Challenge Level:

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

### Counting Factors

##### Stage: 3 Challenge Level:

Is there an efficient way to work out how many factors a large number has?

### Repeaters

##### Stage: 3 Challenge Level:

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

### There's Always One Isn't There

##### Stage: 4 Challenge Level:

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

### Special Sums and Products

##### Stage: 3 Challenge Level:

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

### Two Much

##### Stage: 3 Challenge Level:

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

### Remainders

##### Stage: 3 Challenge Level:

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

### Gaxinta

##### Stage: 3 Challenge Level:

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

### Ewa's Eggs

##### Stage: 3 Challenge Level:

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

### Oh! Hidden Inside?

##### Stage: 3 Challenge Level:

Find the number which has 8 divisors, such that the product of the divisors is 331776.